quadratic function - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

quadratic function - vertaling naar russisch

FUNCTION DEFINED BY A POLYNOMIAL OF DEGREE TWO
Quadratic polynomial; Quadratic functions; Second degree polynomial; Quadratic trinomial; Second-degree polynomial; Second-order polynomial; Second order polynomial; Y=ax^2+bx+c; Y=ax2+bx+c; Quadratic expression; Quadratic math; Single-variable quadratic function

quadratic function         

математика

квадратическая функция

quadratic trinomial         

математика

квадратный трехчлен

second-degree polynomial         

математика

квадратный многочлен

Definitie

quadratic
[kw?'drat?k]
¦ adjective Mathematics involving the second and no higher power of an unknown quantity or variable.
Origin
C17: from Fr. quadratique or mod. L. quadraticus, from quadratus, quadrare (see quadrate).

Wikipedia

Quadratic function

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

For example, a univariate (single-variable) quadratic function has the form

f ( x ) = a x 2 + b x + c , a 0 , {\displaystyle f(x)=ax^{2}+bx+c,\quad a\neq 0,}

where x is its variable. The graph of a univariate quadratic function is a parabola, a curve that has an axis of symmetry parallel to the y-axis.

If a quadratic function is equated with zero, then the result is a quadratic equation. The solutions of a quadratic equation are the zeros of the corresponding quadratic function.

The bivariate case in terms of variables x and y has the form

f ( x , y ) = a x 2 + b x y + c y 2 + d x + e y + f , {\displaystyle f(x,y)=ax^{2}+bxy+cy^{2}+dx+ey+f,}

with at least one of a, b, c not equal to zero. The zeros of this quadratic function is, in general (that is, if a certain expression of the coefficients is not equal to zero), a conic section (a circle or other ellipse, a parabola, or a hyperbola).

A quadratic function in three variables x, y, and z contains exclusively terms x2, y2, z2, xy, xz, yz, x, y, z, and a constant:

f ( x , y , z ) = a x 2 + b y 2 + c z 2 + d x y + e x z + f y z + g x + h y + i z + j , {\displaystyle f(x,y,z)=ax^{2}+by^{2}+cz^{2}+dxy+exz+fyz+gx+hy+iz+j,}

where at least one of the coefficients a, b, c, d, e, f of the second-degree terms is not zero.

A quadratic function can have an arbitrarily large number of variables. The set of its zero form a quadric, which is a surface in the case of three variables and a hypersurface in general case.

Vertaling van &#39quadratic function&#39 naar Russisch